
Black Forest Software Corporation's

Crossfire Library
Author:  Daniel Martini
Copyright: Ó Black Forest Software Corporation, 1993, All rights reserved.
Product: Paradox for Windows MDI/intra-application communications system

Summary: Crossfire is a Paradox for Windows compiled library (XFire.LDL) containing methods 
that offer enhanced application window management functions.  The functions are geared
primarily to the management of multiple forms in an application and provide easy-to-use 
MDI (Multiple Document Interface) programming techniques, as well as simplifying the 
passing of data between forms, and handling auto-incrementing fields.



Introduction
Crossfire is a Paradox for Windows ObjectPAL library, XFire.LDL, that makes 

ObjectPAL MDI programming easier.  MDI or Multiple Document Interface, interpreted 
loosely refers to an application that allows several child windows open on the desktop at 
once in an organized fashion.  Used properly, MDI gives an application unparalleled 
flexibility and a highly polished look and feel.  However, MDI programming in Paradox 
for Windows is difficult even for experienced professional ObjectPAL programmers.  

Crossfire was designed to make MDI programming easy by placing the burden of 
window management on a pre-programmed ObjectPAL library, and to remove some of 
this burden from the developer.  The Crossfire library is very easy to use and understand 
and can add remarkable power to Paradox for Windows applications.  Now, no matter 
how your user navigates though your program, you will have instant reference to, and 
control of, any and all forms that they have open at a given time.  Simply register the 
library in each form in your application using the provided API (application programming
interface) and you can begin using the suite of MDI methods now at your control.

Crossfire is written entirely in ObjectPAL and as such uses many methods which 
provide information about forms to do its work.  In fact two methods, MDITile and 
MDICascade, place direct calls to the appropriate menuAction statements to tile and 
cascade windows, for your convenience.  All other Crossfire methods are written to 
expand on several built-in ObjectPAL methods and replace others.

Many of the native Paradox for Windows methods that provide information about 
forms on the desktop can be used to simulate Crossfire's behavior, but require significant 
coding to do so.  One of the benefits of using Crossfire is that rather than attaching to 
another window's title to get its form handle you simply refer to that form by name.  
Many programmers use the window title to provide information to the user and doing so 
change the title many times during program execution.  This makes getting a form handle
based on the title difficult and tedious since you must maintain record of the titles' 
various states at runtime and provide this information to all forms that may need it.  
Additionally, if you hard code form titles in your code to permit attaching to them, and 
you decide later to alter these titles at design-time, you must change all explicit 
references to the titles to reflect the new values.  This too can become very tedious.  
Dynamic arrays are used extensively in Crossfire to provide a logical association between
the name of a form and the various handles available for it.  As long as you know the 
name of a form, you have access to its handle.

The Crossfire library is targeted at Paradox for Windows users and developers 
who have at least a basic understanding of ObjectPAL programming.  It is not necessary 
to understand how to build a library to use Crossfire, but the user is expected to 
understand rudimentary ObjectPAL programming concepts such as declaring variables 
and calling methods for Crossfire to be useful.

For those who do know how to construct libraries, Crossfire will prove eminently 



useful since it can offer a great deal to the programmer interested in reducing coding time
and who is interested in reusable code.  Crossfire routines are used in a custom library in 
exactly the same way as they are used in forms, giving you the ability to centralize your 
window handling program code.  The example application included with Crossfire, 
SoftWatch, shows how to integrate Crossfire with forms as well as with another custom 
library of your creation.  SoftWatch is a full-featured, "real world" application containing 
a wealth of useful ObjectPAL programming techniques and is provided with full source 
code, except for that of the Crossfire library itself which will be provided upon product 
registration.



Intra-application Communication
Intra-application communication (passing data and messages between forms) has 

always been regarded as tricky at best in ObjectPAL programming.  Crossfire makes this 
daunting and tedious task easier.  By registering the Crossfire Library in each form in 
your application, the channels are opened to directly assign values between forms.  To 
send or receive detailed information and data among open forms in an application, simply
call one of the many methods available in the library for this purpose.  

In Paradox for Windows and ObjectPAL, there is no such animal as a truly 
"global" variable.  You cannot declare a variable that exists at the application level which
can be used as a means of shuttling values from form to form.  This does have 
advantages, though they may not at first be apparent.  Global variables as found in other 
languages such as BASIC or XBase can provide an easy way to move global data 
between entities, but this comes at a price.  Global variables used wantonly can make a 
program difficult to follow and often with disastrous results.  

When you consider the complexity of the Paradox for Windows containership 
model, the way objects may be owned or "contained" by other objects, and the inherent 
risk associated with global variables that can be changed anywhere and anytime, you 
might imagine how they could get you into trouble.  If you were to place references to a 
global variable at several locations in a complex form, and then place references to the 
same global variable in several locations in several other complex forms, and you 
discovered that the variable was taking on a rogue value somewhere at runtime, you have 
what professional programmers call a serious problem.

Nonetheless, the need to pass data among form windows in an application is a 
very real one.  The way this is done is via a library.  Libraries in ObjectPAL should be 
thought of differently than libraries in other languages.  In other languages, libraries are 
simply files that contain pre-programmed routines that are used during program 
execution by referencing them in your program at the appropriate places in your code.  
ObjectPAL libraries serve the same purpose, but in addition to containing executable 
code, they may also contain variables that can hold data at runtime.  Several forms can 
share a library at the same time and by extension share the same data area within a library
as well.  As long as a library remains open and referenced by at least one form, the data 
area is preserved.  Other forms may tap into this data area by opening the library with the 
GlobalToDeskTop parameter, so long as methods exist to provide access to the data 
values.

You see, library variables cannot be considered truly global either.  They are 
directly accessible to methods and procedures in the library, but not directly accessible 
outside of the library.  However, library methods have the ability to pass values into and 
out of the library's variables easily enough.

Typically, ObjectPAL programmers pass data between forms by creating a small 
library of methods and variables which is then used as a vehicle for form to form 



communication.  The library should contain a full complement of methods that allow you 
to send data to its variables and to retrieve those values again at a later time, usually from
another form.  At the simplest level, methods can be created to pass each of the standard 
data types, but for more complex applications such limitations would prove challenging 
at best.

Beyond the issue of passing data from form to form is the issue of controlling one 
form from another at runtime.  The most common way to manipulate a remote form is to 
open it and keep the handle from that opening operation or to attach a form variable to 
another form's title.  Additionally, the form.wait() method is used frequently as a way of 
handling a second form during program execution.  This has the unfortunate side-effect 
of making the application somewhat "modal".  Although there are times when making a 
form appear modal to the user is desirable, a Windows application that is too rigid in 
nature tends to defeat the purpose of using a windowing environment.  Not to mention 
that it can make a perfectly good program appear amateurish to the users of the system.

Data may be passed between forms in two distinct ways using the Crossfire 
library.  The first technique is based on the concept of sending and receiving data to and 
from library variables.  The Crossfire methods that take this approach work with dynamic
arrays.  A globalDataBag is an internal Crossfire dynamic array used for storing global 
data.  By defining a custom type similar to this in your forms, you can pass a variety of 
data from a form to one or more other forms in one fell swoop.  The concept is simple; in 
your type declaration window create a type called AnyBag as a dynamic array of 
AnyType.

type
; Creating an AnyBag
AnyBag = dynarray[] AnyType
endType

Now you can use this type to declare variables of your own that can be passed 
into Crossfire for distribution to other forms easily using the xf_GDBSet and 
xf_GDBGet methods.  

Briefly, here is a simple example of how you would send and receive data 
between forms:

In the form sending the data, load your values into a local variable of type 
AnyBag and send them to the globalDataBag by calling a method, xf_GDBSet.

; formOne::SendData::pushButton
method pushButton(var eventInfo Event)
var 

localDataBag AnyBag
endVar

localDataBag["CompanyName"] = "Black Forest Software Corp"
localDataBag["NumberOfEmployees"] = 30



; Send data to the GDB (global data bag)
Crossfire.xf_GDBSet(localDataBag)

endmethod

In another form, you can retrieve these values like so:

; formTwo::ReceiveData::pushButton
method pushButton(var eventInfo Event)
var 

myDataBag AnyBag
CustomerName String
CustomerSize SmallInt

endVar

; Get the data from the GDB (global data bag) into myDataBag
myDataBag = Crossfire.xf_GDBGet()

; Grab the values from the localDataBag
CustomerName = myDataBag["CompanyName"]
CustomerSize = myDataBag["NumberOfEmployees"]

endmethod

That's just about as hard as it gets.  Of course, there other methods to complement
these, but most of the work of passing data can be done with xf_GDBSet and 
xf_GDBGet.  There are three such custom types used by the Crossfire library for various 
purposes.

The second method of passing information between forms using Crossfire is a 
little more sophisticated, but a lot more powerful.  Where Crossfire shines is in its ability 
to provide pointers to any open form during application execution.  Without regard to the 
way your users advance through your application, opening and closing forms in 
sometimes random fashion, you can get information about which forms are open and 
even get pointers to the forms themselves by calling Crossfire methods.  The only thing 
you need to get a handle to a form is that form's name.  The form name should be 
understood to mean the name of the form and not the title of that form.  The form name 
may be accessed and changed by right-clicking on the title bar in design mode.  The 
default name for a new form is #Form1 and should be changed to something more 
meaningful early in development.

Since Crossfire can provide handles to any and all open forms from wherever you 
happen to be calling from, values such as object properties can be easily retrieved from 
other forms by using these handles.  Likewise, you can execute methods for any object on
any other form as well.  You get and set values and execute methods by using the form's 
handle and the full object name.  

method pushButton(var eventInfo Event)
var 

formName String



formHandle Form
seedNumber SmallInt
ECode SmallInt

endVar

seedNumber = 100
formName = "MyProductForm"

ECode = Crossfire.xf_MDIGetFormHandle(formName,formHandle)

if ECode = 0 then
; Directly assign the seed value to a field on that form
formHandle.MyTFrame.MyField = seedNumber

else
; An error occurred; report it
msgStop("Crossfire Error",xf_UTErrorMessage(ECode))

endif
endmethod

This example is a simple one, and much more complex manipulations are 
possible.  You may wish to perform some action on ALL open forms without knowing the
names of those forms.  Crossfire provides this ability with equal ease.  Consider the 
following method that closes all forms but the one we are calling from.

method pushButton(var eventInfo Event)
var

formBag dynArray[] String
formName String
formHandle Form
selfName String

endVar

; Get the current form's name
formHandle.attach()
selfName = formHandle.name

; Get ALL open form names
Crossfire.xf_MDIGetAllFormNames(formBag)

forEach formName in formBag
; Get a handle for each of the open forms
Crossfire.xf_MDIGetFormHandle(formBag[formName],formHandle)

; If the currently held handle is not for the form we're in,
; close that form
if formHandle.name <> selfName then

formHandle.close()
endif

endForEach

endmethod

You provide the name of the form and Crossfire will get the handle, if it is open.  
Please note again: The form name is not to be confused with the form title.  A form's 



name may be accessed and changed by right-clicking on the forms title bar in design 
mode.  The default name for new forms is #Form1, and should be changed from this 
default to distinguish it from other forms in you application.

The previous code example was redundant since Crossfire provides you with 
similar high-level methods already built-in, but it does begin to explain some of the 
power of the library.  

The reason both techniques of communication discussed above are provided in 
Crossfire is that variables in a form are not part of the form's true hierarchy and thus 
cannot be referenced the way objects on a form can.  The GDB methods and the MDI 
methods work together to provide you with a full suite of tools to communicate data and 
execute methods between forms at will.



A Word About Libraries
Libraries are files that contain user-created methods, procedures and data.  You 

can create libraries of custom code to be reused by a single form, several forms, or 
several applications.  Methods and procedures are created for a library exactly the same 
way that you would create them for a form.  In fact, many libraries come about because 
the developer determined that a custom method on a form could be used by other forms 
in an application and so then added them to a library where they could be shared.

Libraries, indeed, have much in common with forms.  They have uses, type, 
const, var and proc windows and  built-in open, close and error methods.  Of course, a 
library's main purpose is to house user created methods and procedures.

After a library has been created, its methods can be made available to forms by 
performing a few setup chores in the forms with which they are intended to be used.  To 
use a library's methods in a form, you must provide the form with certain information 
about the library.  The form's uses window must contain prototypes for the methods that 
will be called from the library.  A prototype is nothing more than a line of code that 
names the method and declares its parameters and return values, if any exist.  If a uses 
window refers to ObjectPAL library methods, the uses clause must contain the suffix 
"ObjectPAL".  For example:

uses ObjectPAL
xf_MDIMinimizeAll() SmallInt
endUses

This tells the form that the library method xf_MDIMinimizeAll is an ObjectPAL 
method, it takes no parameters, and it returns a SmallInt (small integer) type.  Now 
declared, this method can be called from within the form.

There are a few other details that must be provided to the form before the library 
may be used.  The library must first be opened by the form, and a library variable is used 
to do this.  A library variable should be declared in one of the forms var windows, 
usually at the form level so that the library is visible from anywhere on the form.

var
Crossfire Library
endVar

Any custom types used as parameters in the method prototypes must also be 
entered in the form that uses the custom methods.  Crossfire uses three such custom types
and are entered into your form's type window as follows:

Type
; Crossfire Types
AnyBag = dynArray[] AnyType
FormBag = dynArray[] Form
StringBag = dynArray[] String



endType

Finally, now that we declared our library variable, entered our "uses ObjectPAL" 
prototypes and our custom types, the library itself must be opened before the methods 
within it can be used.  Again, for many cases it is a good idea to open the library at the 
form level for broadest visibility.

; Form level open method
method open(var eventInfo Event)
if eventInfo.isPreFilter() then

; This code executes for each object on the form.
else

; This code executes only for the form.
doDefault

; Open the Crossfire library 
if NOT Crossfire.open(":CROSSFIRE:XFIRE.LDL",GlobalToDesktop) then

msgStop("Error:", "Crossfire library could not be opened")
self.close()

endif
endif
endmethod

The library methods whose prototypes are listed in the forms uses window then 
become accessible to the form.   It is not necessary to list prototypes for all of a library's 
methods in a form.  It is only necessary to list those methods that the form will be calling.
The three custom types mentioned earlier must also be pasted into your forms to support 
the Crossfire method prototypes.

An advantage to listing all of a library's method prototypes in a form is that it 
relieves you of the burden of trying to keep the uses window in synch with the methods 
you are actually using.  As you gain proficiency with Crossfire library, you will probably 
find yourself using more and more of its methods to exploit the power available to you.  
Rather than repeatedly going back to the uses windows of all of your forms to update 
them with the method prototypes you wish to use, you should consider listing all of the 
library's method prototypes in the uses window early in development.



Using Crossfire Library
Using Crossfire library in your applications is straightforward, provided that you 

follow a few simple guidelines.  First, it is a good idea to create an alias called 
CROSSFIRE interactively in Paradox for Windows.  The sample application provided 
with the Crossfire library, SoftWatch, requires an alias named CROSSFIRE to run.  

An alias easily is created in Paradox for Windows by selecting Aliases... from the 
File menu.  In the resulting dialog box, Alias Manager, press the New button.  Then, 
enter "CROSSFIRE" as the Database Alias, choose the "STANDARD" Driver Type and
enter the full DOS path name where Crossfire library is stored in the Path edit region.  
Then select Save As... and confirm that you wish to save the alias in the ODAPI 
configuration file.  Once this has been done, the example applications will know where to
find Crossfire library, and should run correctly.

In your applications that use Crossfire, it is recommended that all forms are 
registered with Crossfire upon opening.  You need not register your dialog box forms 
with Crossfire, but sometimes it is desirable to do so for special effects.  The way to 
register a form with Crossfire is to first open the library and then place a call to the 
method, xf_MDIConstructor.  When closing a form, call the method, 
xf_MDIDestructor.  These two methods are all that are required to allow the Crossfire 
MDI methods to function properly.  The constructor creates an entry for a form in 
Crossfire's dictionary.  This dictionary cannot be manipulated directly, but is a network of
interconnected data structures used internally to manage forms on the desktop.  After the 
library is opened and the constructor is called, the MDI methods in Crossfire are 
immediately available.  GDB methods do not require the constructor and destructor calls 
to use them.  Only the MDI methods require these calls.

The destructor, as you might imagine, removes references to the calling form 
from Crossfire's internal dictionary structures.  The constructor and destructor calls are 
imperative to keeping the dictionary structures up to date.  While these methods may 
actually be called at any time, the results of improperly updating Crossfire's dictionary 
will be unpredictable, so registration at the form level open and close methods are 
recommended.

Please note that most of the methods in the Crossfire library require that the 
custom types and the method prototypes, listed later in this document, be pasted or typed 
into your form's Type window and the form's Uses window respectively.  This is a very 
easy operation to perform and you can even cut the information directly from this 
document and paste it into your forms without modification as will be explained later in 
the "Crossfire Custom Types" and "Uses ObjectPAL Window Prototypes" sections. 

If you adhere to the few simple rules noted above, the Crossfire library methods 
are readily available to the forms in your applications.  You will undoubtedly develop 
your own approach to using the library, but in its simplest form, you can think of it as a 
global form manager.  While you actually control how the application flows, you will 



typically make requests to Crossfire for certain resources that it maintains.  If you want 
handles to a form or several forms, you do not need to attach a variable to another form's 
title, which may be constantly changing, nor do you have to explicitly open one form 
from another just to get the handle.  You simply declare a form variable, and request the 
handle.   Then you can work with its objects directly and discard the variables and the 
handles until you need them again.  The services that Crossfire provides remove much of 
the tedium of tracking resources yourself and lets you focus on the problems your 
application is designed to solve.

The best way to learn to use the Crossfire library is to explore the source code in 
SoftWatch, the sample application that ships with Crossfire.  SoftWatch is an excellent 
example of how to use Crossfire in a "real world" application and contains a large amount
of source code that illustrates many advanced Paradox for Windows programming 
constructs.



Reference
Data Passing Services

xf_GDBEmpty()
xf_GDBGet() AnyBag
xf_GDBGetValue(GDBTag String) AnyType
xf_GDBSet(GDB AnyBag)
xf_GDBSetValue(GDBTag String, NewGDBValue AnyType)
xf_GDBSwapValue(GDBTag String, NewGDBValue AnyType) AnyType

MDI Services

xf_MDICascade()
xf_MDICloseAll(editTerm String) SmallInt
xf_MDIConstructor() SmallInt
xf_MDIDestructor()
xf_MDIGetFormHandle(formName String, var formHandle Form) SmallInt
xf_MDIGetAllFormHandles(var formHandleBag FormBag)
xf_MDIGetAllFormNames(var formNameBag StringBag)
xf_MDIGetAllFormTitles(var formTitleBag StringBag)
xf_MDIIsFormOpen(formName String) Logical
xf_MDIMinimizeAll()
xf_MDIMinimizeAllButSelf()
xf_MDITile()
xf_MDIUnMinimizeAll()

Utility Services
xf_SEQIncrement(tableName String, var fieldName String) Number
xf_UTErrorMessage(xf_ErrorCode SmallInt) String



xf_GDBEmpty
METHOD Empties the contents of the globalDataBag.  The 

globalDataBag is the central data container used by Crossfire for 
passing data between forms.  xf_GDBEmpty removes all existing 
values in preparation for sending in new data.

PROTOTYPE
xf_GDBEmpty()

EXAMPLE

; ClearGlobalDataBag::pushButton
method pushButton(var eventInfo Event)

; Clear the GDB
Crossfire.xf_GDBEmpty()

endmethod



xf_GDBGet
METHOD Retrieve the contents of the globalDataBag into a dynamic 

array.  The globalDataBag is the central data container used by 
Crossfire for passing data between forms.  xf_GDBGet permits copying
the contents of the globalDataBag into a local dynamic array.

RETURNS The contents of the globalDataBag.

PROTOTYPE
xf_GDBGet() AnyBag

EXAMPLE

; RetrieveGlobalData::pushButton
method pushButton(var eventInfo Event)
var 

myLocalDataBag dynArray[] AnyType
endVar

; Copy the contents of the GDB
myLocalDataBag = Crossfire.xf_GDBGet()

myLocalDataBag.view() ; displays the values retrieved from the GDB

endmethod



xf_GDBGetValue
METHOD Get the value of a globalDataBag element.  The 

globalDataBag is the data container inside Crossfire library used for 
passing information between forms.  xf_GDBGetValue provides a 
means of quick retrieval of a single value from the globalDataBag.  
GDBTag is the index of the globalDataBag element you are 
interrogating.

PARAMETERS
GDBTag Tag of the element to be retrieved

RETURNS The value of the dynamic array element in GDBTag, or "" if 
none

PROTOTYPE
xf_GDBGetValue(GDBTag String) AnyType

EXAMPLE

; RetrieveCustomerName::pushButton
method pushButton(var eventInfo Event)
var 

custName String
endVar

; Get the CustomerName element from the GDB
custName = Crossfire.xf_GDBGetValue("CustomerName")

if custName <> "" then
msgInfo("Customer Name:",custName)

else
msgStop("PROBLEM","Customer name was empty!")

endif
endmethod



xf_GDBSet
METHOD Pass the contents of a dynArray, the parameter dBag, to the 

globalDataBag.  The globalDataBag is the central data container used 
by Crossfire for passing data between forms.  xf_GDBSet permits 
copying the contents of a dynamic array to the globalDataBag.  Any 
elements of the globalDataBag of the same name as those being sent 
via xf_GDBSet will automatically be overwritten.

PARAMETER
dBag A dynamic array of values to copy to the 

globalDataBag.  An AnyBag (a dynarray of AnyType) should be used 
to declare dBag.

PROTOTYPE
xf_GDBSet(dBag AnyBag)

EXAMPLE

; PassCustomerInfo::pushButton
method pushButton(var eventInfo Event)
var 

CustomerInfo dynArray[] AnyType
endVar

CustomerInfo["custName"] = "BFS Corp."
CustomerInfo["acctNum"] = "BFS-1234"
CustomerInfo["zipCode"] = "22172"
CustomerInfo["acctBal"] = 250.00

; Send the CustomerInfo dynamic array to the GDB for later retrieval
Crossfire.xf_GDBSet(CustomerInfo)

endmethod



xf_GDBSetValue
METHOD Sets the value in a globalDataBag element.  The 

globalDataBag is the data container inside Crossfire library used for 
passing information between forms.  xf_GDBSetValue provides a 
means of quickly passing a single value to the globalDataBag.  
GDBTag is the index of the globalDataBag element you are assigning.

PARAMETERS
GDBTag Tag of the dynamic array element to be set
NewGDBValue New value to be assigned

PROTOTYPE
xf_GDBSetValue(GDBTag String, NewGDBValue AnyType)

EXAMPLE

; PassCustomerName::pushButton
method pushButton(var eventInfo Event)
var 

custName String
endVar

custName = "Black Forest Software Corporation"

; Send the CustomerName element to the GDB
Crossfire.xf_GDBSetValue("CustomerName",custName)

endmethod



xf_GDBSwapValue
METHOD Swap values in a globalDataBag element.  The globalDataBag 

is the data container inside Crossfire library used for passing 
information between forms.  xf_GDBSwapValue provides a means of 
quickly swapping the contents of an element in the globalDataBag.  
GDBTag is the index of the globalDataBag element you are 
exchanging.

PARAMETERS
GDBTag Tag of the dynamic array element to be swapped
NewGDBValue New value to be assigned

RETURNS The old value of the GDBTag, or "" if none

PROTOTYPE
xf_GDBSwapValue(GDBTag String, NewGDBValue AnyType) AnyType

EXAMPLE

; SwapContactName::pushButton
method pushButton(var eventInfo Event)
var 

oldContactName,
firstContactName,
newContactName String

endVar

firstContactName = "Harry Benson"

Crossfire.xf_GDBSetValue("ContactName", firstContactName)

; Next line displays "Harry Benson"
msgInfo("Current Contact Name:",Crossfire.xf_GDBGetValue("ContactName"))

newContactName = "Ian Malcom"

; Swap the ContactName element to the GDB
oldContactName = Crossfire.xf_GDBSwapValue("ContactName",newContactName)

; Next line displays "Ian Malcom"
msgInfo("New Contact Name:",Crossfire.xf_GDBGetValue("ContactName"))

; Next line displays "Harry Benson"
msgInfo("Old Contact Name:",oldContactName)

endmethod



xf_MDICascade
METHOD Cascade all forms windows on the desktop by calling a 

Paradox for Windows menuAction expression.  This method is 
redundant and only  provided for convenience.

PROTOTYPE
xf_MDICascade()

EXAMPLE

; CascadeWindows::pushButton
method pushButton(var eventInfo Event)

Crossfire.xf_MDICascade()

endmethod



xf_MDICloseAll
METHOD Attempts to close all open forms on the desktop.  

xf_MDICloseAll only closes forms that are registered with Crossfire 
library.   If a form is found to be in "edit" mode, xf_MDICloseAll 
handles it according to the value passed in the parameter editTerm.  If 
editTerm is "CANCELRECORD", Crossfire cancels the record and 
then attempts to end edit mode.  If editTerm is "POSTRECORD", 
Crossfire attempts to post the record and then attempts to end edit 
mode.  If the operation is unsucessful, Crossfire returns a numeric error
code indicating the result of the operation.

PARAMETER
editTerm A string indicating how to handle a form found in edit mode.  

Either "CANCELRECORD" or "POSTRECORD" may be used.  A null
string, "", will cause xf_MDICloseAll to assume the default behavior 
which is the same as "POSTRECORD".

RETURNS An error code, zero if successful, non-zero otherwise.

PROTOTYPE
xf_MDICloseAll(editTerm String) SmallInt

EXAMPLE

; CloseAndPostForms::pushButton
method pushButton(var eventInfo Event)
var 

ECode SmallInt
endVar

ECode = Crossfire.xf_MDICloseAll("POSTRECORD")

; If a problem occurred, such as a keyViolation, Crossfire will not be able to close the 
; form.  Default behavior can be changed to cancel the record by using the constant 
; "CANCELRECORD" instead
if ECode <> 0 then

MsgStop("PROBLEM",Crossfire.xf_UTErrorMessage(ECode))
endif
endmethod



xf_MDIConstructor
METHOD Registers the current form with the Crossfire library.  The 

constructor creates an MDI entry in the library that the library uses to 
represent that form.  All forms in an application should call 
xf_MDIConstructor in the form's open method and call 
xf_MDIDestructor in the form's close method.  Forms that do not call 
the constructor and the destructor will not be affected by calls to other 
Crossfire methods and can disrupt the services provided by the library.

RETURNS An error code, zero if successful, non-zero otherwise.

PROTOTYPE
xf_MDIConstructor() SmallInt

EXAMPLE

; CustomerForm::open
method open(var eventInfo Event)
if eventInfo.isPreFilter() then

; This code executes for each object on the form.
else

; This code executes only for the form.
; Open the Crossfire library 
if Crossfire.open(":CROSSFIRE:XFIRE",GlobalToDesktop) then

; Initialize the MDI entry
ECode = Crossfire.xf_MDIConstructor()

; Test to see if there was a problem
if ECode <> 0 then

msgStop("ERROR:",Crossfire.xf_UTErrorMessage(ECode))
; Do something appropriate
; The form will close automatically

else
maximize()

endif
else

msgStop("PROBLEM", "Crossfire library could not be opened")
self.close()

endif
endif
endmethod



xf_MDIDestructor
METHOD De-registers the form with Crossfire library.  The destructor 

removes the MDI entry used to represent the current form from 
Crossfire library.  All forms in an application should call 
xf_MDIConstructor in the form's open method and call 
xf_MDIDestructor in the form's close method.  Forms that do not call 
the constructor and the destructor will not be affected by calls to other 
Crossfire methods and can disrupt the services provided by the library.

PROTOTYPE
xf_MDIDestructor()

EXAMPLE

; CustomerForm::close
method close(var eventInfo Event)
if eventInfo.isPreFilter() then

; This code executes for each object on the form.
else

; This code executes only for the form.
doDefault

; Destroy the MDI entry
Crossfire.xf_MDIDestructor()

endif
endmethod



xf_MDIGetFormHandle
METHOD Acquires a Form handle for the formName requested.  This 

method assigns the handle to the variable parameter, formHandle, given
by the programmer.  The form named in formName must be open and 
registered to Crossfire library.  If a handle cannot be retrieved, a 
numbered errorcode is returned.

PARAMETERS
formName name of form for requested handle
formHandle form variable to receive the requested handle, passed by 

reference

RETURNS An error code, zero if successful, non-zero otherwise.

PROTOTYPE
xf_MDIGetFormHandle(formName String, var formHandle Form) SmallInt

EXAMPLE

; PresentProductForm::pushButton
method pushButton(var eventInfo Event)
var 

formName String
productForm Form

endVar

formName = "Product"

if Crossfire.xf_MDIGetFormHandle(formName,productForm) = 0 then
productForm.bringToTop()

else
productForm.open("PROD.FSL")

endmethod



xf_MDIGetAllFormHandles
METHOD Returns a dynamic array of all open form handles in the 

formHandleBag parameter.

PARAMETER
formHandleBag the dynamic array of form handles, or FormBag,  to contain 

the handles,  passed by reference.  The dynamic array, formHandleBag,
is emptied by Crossfire before new values are assigned.  If the dynamic
array contains values before the call to this method, all values will be 
lost.  The index or subscript of the returned array is name of the form 
and the element value of the form is the form handle.

PROTOTYPE
xf_MDIGetAllFormHandles(var formHandleBag FormBag)

EXAMPLE

; AreFormsEditing::pushButton
method pushButton(var eventInfo Event)
var 

formHandleBag dynArray[] Form
formID String

endVar

Crossfire.xf_MDIGetAllFormHandles(formHandleBag)

forEach formID in formHandleBag
     if formHandleBag[formID].editing then

msgInfo("Guess what?","Form: "+formHandleBag[formID].name+" is editing!")
     endif
endForEach

endMethod



xf_MDIGetAllFormNames
METHOD Returns a dynamic array with all open form names into the 

formNameBag parameter.  The dynamic array, formNameBag, is 
emptied by Crossfire before new values are assigned.  If the dynamic 
array contains values before the call to this method, all values will be 
lost.  The index or subscript of the returned array is the name of the 
form and the element value of the form is also the form name.

PARAMETER
formNameBag the dynamic array of strings, or StringBag, to contain the form

names,  passed by reference.

PROTOTYPE
xf_MDIGetAllFormNames(var formNameBag StringBag)

EXAMPLE

; CheckCustomerOrSalespersonForms::pushButton
method pushButton(var eventInfo Event)
var 

formNameBag dynArray[] String
tmpForm Form

endVar

Crossfire.xf_MDIGetAllFormNames(formNameBag)

; Open customer form if need be
if not formNameBag.contains("Customer") then
     tmpForm.open("CUSTFRM.FSL")
     tmpForm.hide()
endif

; Open sales form if need be
; NOTE:The tmpForm variable can be immediately reused since we can get the form 
; handles later whenever we like
if not formNameBag.contains("Sales") then
     tmpForm.open("SALESFRM.FSL")
     tmpForm.hide()
endif

endMethod



xf_MDIGetAllFormTitles
METHOD Returns a dynamic array with all open form titles into the 

formTitleBag parameter.

PARAMETER
formTitleBag the dynamic array of strings to contain the returned form titles,

passed by reference.  The index or subscript of the returned array is the 
name of the form and the element value of the form is the form title.

PROTOTYPE
xf_MDIGetAllFormTitles(var formTitleBag StringBag)

EXAMPLE

; ViewOpenFormTitles::pushButton
method pushButton(var eventInfo Event)
var 

formTitleBag dynArray[] String
endVar

Crossfire.xf_MDIGetAllFormTItles(formTItleBag)

formTitleBag.view()  
; Shows the current window titles for all open forms registered with
; Crossfire library.  See the SoftWatch Window Manager for a practical 
; use of these titles

endMethod



xf_MDIIsFormOpen
METHOD Determines whether formName is open and registered to

Crossfire.  If the form is open the method returns a logical True, 
otherwise it returns False.

PARAMETERS
formName name of form to test

RETURNS True if the form is open and registered with Crossfire, 
False otherwise.

PROTOTYPE
xf_MDIIsFormOpen(formName String) Logical

EXAMPLE

; TestProductForm::pushButton
method pushButton(var eventInfo Event)
var 

formName String
endVar

formName = "Product"

if Crossfire.xf_MDIIsFormOpen(formName) then
msgInfo("Form is open",formName)

else
msgInfo("Form is NOT open",formName)

endmethod



xf_MDIMinimizeAll
METHOD Minimize all open forms on the desktop that are registered 

with Crossfire library, including the current one.

PROTOTYPE
xf_MDIMinimizeAll()

EXAMPLE

; MinimizeAllWindows::pushButton
method pushButton(var eventInfo Event)

; Minimizes all open forms registered with Crossfire library
Crossfire.xf_MDIMinimizeAll()

endmethod



xf_MDIMinimizeAllButSelf
METHOD Minimize all form windows on the desktop that are registered 

with Crossfire library except for the form that called this method.

PROTOTYPE
xf_MDIMinimizeAllButSelf()

EXAMPLE

; UnClutterDesktop::pushButton
method pushButton(var eventInfo Event)

; Minimizes all open forms registered with Crossfire library
; Except for the current form window
Crossfire.xf_MDIMinimizeAllButSelf()

endmethod



xf_MDITile
METHOD Tile all open form windows in the desktop by calling a 

Paradox for Windows menuAction expression.  This method is 
redundant and only  provided for convenience.

PROTOTYPE
xf_MDITile()

EXAMPLE

; TileWindows::pushButton
method pushButton(var eventInfo Event)

Crossfire.xf_MDITile()

endmethod



xf_MDIUnMinimizeAll
METHOD Restores all minimized open forms on the desktop that are 

registered with Crossfire library, and brings the currently active form to
the top of the stack.

PROTOTYPE
xf_MDIUnMinimizeAll()

EXAMPLE

; ReClutterDesktop::pushButton
method pushButton(var eventInfo Event)

; Minimizes all open forms registered with Crossfire library
; Except for the current form window
Crossfire.xf_MDIMinimizeAllButSelf()

;  ...Do something provocative here...

; Restores the minimized forms to their previous positions
Crossfire.xf_MDIUnMinimizeAll()

endmethod



xf_SEQIncrement
METHOD Generates an auto-incremented number.  xf_SEQIncrement 

will look for a table in the working directory called XFSEQ.DB.  If the
table is not found, xf_SEQIncrement will automatically create it in the 
working directory.  Auto-incremented numbers are tracked by 
tableName and fieldName allowing you to maintain several separate 
parallel tracks for a single table, by field name.  You must pass a 
tableName and a fieldName to xf_SEQIncrement to retrieve an auto-
increment number.

PARAMETERS
tableName The name of the the table to receive the generated number.
fieldName The name of the the field to receive the generated number.

RETURNS An auto-incremented number if successful, -1 otherwise.

PROTOTYPE
xf_SEQIncrement(tableName String, var fieldName String) Number

EXAMPLE

; GetAutoIncrementValue::pushButton
method pushButton(var eventInfo Event)
var 

autoGenNumber Number
endVar

autoGenNumber = Crossfire.xf_SEQIncrement("CUSTOMER","CUSTOMERCODE")

if autoGenNumber <> -1 then
CustomerCode = SalesCode.value+String(INT(autoGenNumber))

else
msgStop("PROBLEM", "Could not generate a number for customer")

endif
endmethod



xf_UTErrorMessage
METHOD Returns an error message translation for a Crossfire error 

constant

PARAMETERS
xf_ErrorCode A SmallInt Crossfire error code

RETURNS A string translation for a Crossfire error constant

PROTOTYPE
xf_UTErrorMessage(xf_ErrorCode SmallInt) String

EXAMPLE

; FormHandleErrorTest::pushButton
method pushButton(var eventInfo Event)
var 

formName String
formHandle Form
seedNumber SmallInt
ECode SmallInt

endVar

seedNumber = 100
formName = "MyProductForm"

ECode = Crossfire.xf_MDIGetFormHandle(formName,formHandle)

if ECode = 0 then
; Directly assign the seed value to a field on that form
formHandle.MyTFrame.MyField = seedNumber

else
; An error occurred; report it
msgStop("Crossfire Error",xf_UTErrorMessage(ECode))

endif
endmethod



Crossfire Custom Types
The following is a listing of custom types that should be typed into the Type 
window of the forms that use Crossfire library.  Most Crossfire methods require 
these custom types to operate and the Crossfire prototypes will expect them to be 
in your form's type window.  You can copy them directly from the page below and
paste them into your forms without modification.

Type

; Crossfire Types
AnyBag = dynArray[] AnyType
FormBag = dynArray[] Form
StringBag = dynArray[] String

endType



"Uses ObjectPAL" Window Prototypes
The following is a listing of method prototypes that should be typed into the uses 
window of the forms that use Crossfire library.  Prototypes for all methods used 
by a form should be entered into that form's uses window.  In fact, you can copy 
them directly from the page below and paste them into your forms without 
modification.

Uses ObjectPAL

;Crossfire Data Passing Services
xf_GDBEmpty()
xf_GDBGet() AnyBag
xf_GDBGetValue(GDBTag String) AnyType
xf_GDBSet(GDB AnyBag)
xf_GDBSetValue(GDBTag String, NewGDBValue AnyType)
xf_GDBSwapValue(GDBTag String, NewGDBValue AnyType) AnyType

;Crossfire MDI Services
xf_MDICascade()
xf_MDICloseAll(editTerm String) SmallInt
xf_MDIConstructor() SmallInt
xf_MDIDestructor()
xf_MDIGetFormHandle(formName String, var formHandle Form) SmallInt
xf_MDIGetAllFormHandles(var formHandleBag FormBag)
xf_MDIGetAllFormNames(var formNameBag StringBag)
xf_MDIGetAllFormTitles(var formTitleBag StringBag)
xf_MDIIsFormOpen(formName String) Logical
xf_MDIMinimizeAll()
xf_MDIMinimizeAllButSelf()
xf_MDITile()
xf_MDIUnMinimizeAll()

;Crossfire Utility Services
xf_SEQIncrement(tableName String, var fieldName String) Number
xf_UTErrorMessage(xf_ErrorCode SmallInt) String

endUses



SoftWatch Example Application
Crossfire is provided with an example program, SoftWatch, that demonstrates 

some of the services provided by Crossfire.  SoftWatch is an application that tracks the 
ordering and registration of software products sold by a small software vendor.  The 
application is provided as an example and although it is not proposed that SoftWatch 
contains all of the business logic required for such an endeavor in "real life", the 
application contains many useful OPAL programming techniques as well as insights to 
the power and usefulness of Crossfire library.  

Source code for SoftWatch is provided with Crossfire library with the exception 
of the source code for the Crossfire library itself which shall be distributed only in its 
compiled form.  Source code for the Crossfire library will be provided upon registration 
of the product.  All of the forms in SoftWatch and the application-specific library, 
SWATCH.LSL, which controls many of SoftWatch's features are open for examination.  
There are many interesting programming techniques in SoftWatch such as centralized 
menu handlers and examples of using multiple libraries in a program among many others.

No tutorial is provided for using SoftWatch, so to uncover many of its techniques 
and suprises, you will have to roll up your sleeves and wade in.  As a quick start, 
however, we offer the following information.

Briefly, you start SoftWatch by changing your working directory to the directory 
where SoftWatch resides.  Next, run SWATCH.FSL or SWATCH.SSL and proceed 
through the menu structures as they are presented.  Both pulldown menus and popup 
menus are presented during program execution.  The popup menus are always available 
by depressing the right mouse button (provided that the mouse is configured for right-
handed operation, of course).  Most Paradox for Windows users will already know that 
the right mouse click will have no such effect if the mouse pointer is hovering over a field
object; move the pointer over a non-field object for the popup menus to appear.  

The records on the forms may be manipulated (added, edited, deleted, etc) when 
the form is in edit mode.  They are not in edit mode by default.  Either press F9, or select 
"Edit" from the menus to go into edit mode, and F9 again or select "End Edit" to end edit 
mode (the menus are context sensitive to a degree).  If you have several forms on the 
desktop at once, the popup menus will be context sensitive relative to the form that you 
"right-click" over.

The menu "Windows" is available from any form and provide some of the simpler
functions provided by Crossfire.  They are, or rather should be, standard "issue" in most 
MDI applications.  Tile, tiles.  Cascade, cascades.  Tidy Desktop, minimizes all forms but
the current one and Restore Desktop un-minimizes all forms that Tidy Desktop affected.  
A unique selection is Window Manager which provides a dialog similar to Windows Task
Manager.  Open several of the SoftWatch windows at once to see how changes in context 
are handled by the system.



Some fields on the Order form (customer name, sales code) have examples of 
custom validation/lookup dialogs which are a cut above the standard table lookup dialogs
otherwise provided.  These dialogs also provide examples of the xf_GDB... data-passing 
methods and other techniques.  Pressing F1 in the Model field of the Order form's table 
frame displays another lookup.  SoftWatch will, however, allow you to enter an un-
validated free form item in the Model field to account for unexpected sales transactions.

Please note that if you are running SoftWatch on a Novell network, you should 
increase the number of allowable open file handles with the line FILE HANDLES = 100 
in  your NET.CFG or SHELL.CFG files.  This will allow you to open all of SoftWatch's 
windows on the desktop at once without incident.  

Although simpler applications would have sufficed to demonstrate some of the 
Crossfire methods, SoftWatch was designed to contribute a few new ideas and illuminate 
some ill-understood concepts.  In SoftWatch you will find techniques for working with 
TCursors, MROs, action event handling, enhanced lookups, coordinating multiple 
libraries, centralized menu handling, quickly printing the current record, auto-
incremented numbers, intra-application passing of data and messages, and many others.  
Some of these use the Crossfire library but many are provided with full source code.  It is
hoped that the extra effort will contribute in some way to the user's knowledge of 
Paradox for Windows in addition to attempting a modest display of the library methods.



Limitations in Crossfire version 1.0
All forms opened simultaneously in an application using the Crossfire library 

must have unique names.  Only one copy of each uniquely named form may be opened at
runtime.  This limitation refers to the form name, not the form title.  The form name is 
accessed and changed by right-clicking on the form's title bar in design mode.  The 
default form name for new forms is #Form1 and should be changed to something more 
meaningful during development.

The sample applications require an alias named CROSSFIRE available in 
Paradox for Windows to run.  An alias easily is created in Paradox for Windows by 
selecting Aliases... from the File menu.  In the resulting dialog box, Alias Manager, 
select the New button, enter "CROSSFIRE" as the Database Alias, choose the 
"STANDARD" Driver Type and enter the full DOS path name where Crossfire library is 
stored in the Path edit region.

Please note that if you are running SoftWatch on a Novell network, you should 
increase the number of allowable open file handles with the line FILE HANDLES = 100 
in your NET.CFG or SHELL.CFG files.  This will allow you to open all of SoftWatch's 
windows on the desktop at once without incident.  

If you discover any anomalies with this version of the Crossfire Library or would 
like to suggest enhancements for inclusion in a future version of Crossfire Library, please
forward the information via Compuserve to Daniel Martini, CIS ID 71033,1722.  



Registration
Please feel free to use the Crossfire Library and the source code for SoftWatch in 

your custom Paradox for Windows application as you see fit.  You may distribute the 
unregistered version Crossfire Library whole or in part with your applications as long as 
you do not remove or obstruct the "unregistered version" notice dialog box from any 
application using the library.  Crossfire Library may be distributed as part of a custom 
Paradox for Windows application to be sold to a single client under this license.  
Crossfire library may not be sold whole or in part as part of any product sold as a Paradox
for Windows programming utility or programming aid.  Crossfire Library may not be 
distributed whole or in part as part of a shareware or retail product without the express 
written permission of Black Forest Software Corporation.  By using Crossfire Library 
you are acknowledging that you have read and agree with the terms of this notice.

If you find Crossfire Library or the SoftWatch application useful, a registration 
fee for the library of $25.00 (US currency) + shipping and handling ($4.00 USA and 
Canada, $15.00 outside USA and Canada) would be greatly appreciated.

When you purchase the licensed version of Crossfire Library you will receive a 
disk with the Crossfire library (XFIRE.LSL) in source form or a file sent via Compuserve
Mail containing the Crossfire library in source form, whichever you choose.  

Make checks or money orders payable to: Black Forest Software Corporation

Mail to:
Black Forest Software Corporation
3618 Wharf Lane
Triangle, VA   22172
USA

Please allow 2-3 weeks for delivery via mail.

Paradox for Windows, ObjectPAL are registered trademarks of Borland International, Inc.


